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A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with
chain-branching kinetics is derived. We consider a model reaction system having
two components: a thermally neutral chain-branching induction zone governed by
an Arrhenius reaction, terminating at a location where conversion of fuel into chain
radical occurs; and a longer exothermic main reaction layer or chain-recombination
zone having a temperature-independent reaction rate. The evolution equation is
derived under the assumptions of a large activation energy in the induction zone and
a slow evolution time based on the particle transit time through the induction zone,
and is autonomous and second-order in time in the shock velocity perturbation. It
describes both stable and unstable solutions, the latter leading to stable periodic limit
cycles, as the ratio of the length of the chain-recombination zone to chain-induction
zone, the exothermicity of reaction, and the specific heats ratio are varied. These
dynamics correspond remarkably well with numerical solutions conducted earlier for
a model three-step chain-branching reaction.

1. Introduction
Unsteady one-dimensional detonation waves are known to undergo a pulsating form

of instability (McVey & Toong 1971; Alpert & Toong 1972; Lehr 1972; Kaneshige
& Shepherd 1996). An understanding of the intricate coupling between the exother-
mic reactive chemistry and nonlinear gasdynamic wave propagation which leads to
the instability is highly desirable. However, a general analytical description of this
nonlinear behaviour is a matter of severe mathematical complexity. Nevertheless,
major advances can be made by exploiting limiting asymptotic forms of the problem,
and the present work follows in this mould through the derivation of a nonlinear
evolution equation for Chapman–Jouguet detonations with model chain-branching
reaction kinetics.

To date, the majority of theoretical work on one-dimensional detonation stability
has been conducted for Arrhenius one-step-reaction chemistry (Bourlioux, Majda &
Roytburd 1991; Buckmaster & Ludford 1986; Buckmaster 1988; Short 1996, 1997;
Yao & Stewart 1996). Two notable exceptions are those of Abouseif & Toong (1982)
and Clavin & He (1996). Abouseif & Toong (1982) consider a two-zone detonation
structure consisting of a high-activation-energy weak-heat-release induction zone
followed by an exothermic main reaction layer of finite spatial extent. Although
ad-hoc, the analysis does consider Chapman–Jouguet detonations, i.e. waves whose
equilibrium flow is sonic in a frame attached to the lead detonation shock. This
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isolates the main detonation structure from the equilibrium flow. Clavin & He (1996)
also examine a similar two-zone detonation structure, but the analysis only applies
in the limit of very high detonation overdrive. In reality, almost all detonations run
at, or very close to, the Chapman–Jouguet velocity, and this situation of practical
importance is the concern of the present paper.

In practice, a large class of chemical reactions is not represented effectively by a one-
step Arrhenius reaction model. Rather, a large majority of chemical reactions are chain
branching and proceed by a sequence of chain-initiation, chain-branching and chain-
termination stages. The dynamics of a pulsating detonation wave for model chain-
branching reaction kinetics have been previously studied by Short & Quirk (1997)
and Short, Kapila & Quirk (1999). The three-step chain-branching model studied
by these authors consists of thermally-neutral chain-initiation and chain-branching
steps, both governed by Arrhenius kinetics, followed by a temperature-independent
chain-termination step, where heat is released. Specifically, the reaction mechanism is,

Chain-initiation: F → Y ,

Chain-branching: F + Y → 2Y ,

Chain-termination: Y → P ,

 (1.1)

for fuel F , chain-radical Y and product P . Although elementary, the model mimics
the essential dynamics of a chain-branching reaction. In Short & Quirk (1997) a
stability analysis is performed with the chain-branching cross-over temperature TB ,
i.e. the temperature at which chain-branching and chain-termination rates are equal,
as the bifurcation parameter. In the steady structure, this parameter controls the
ratio of the length of the temperature-sensitive chain-branching induction zone li to
that of the temperature-insensitive chain-termination zone lr . Stable detonations are
predicted to occur when li � lr , i.e. when the detonation structure is dominated by
the chain-termination zone (typical of hydrogen–oxygen–diluent systems, e.g. Fick-
ett, Jacobson & Schott 1972). For the parameter study performed in Short & Quirk
(1997), as TB is increased, i.e. the ratio li/lr increases, the detonation undergoes a Hopf
bifurcation leading to a nonlinear pulsating oscillation in the form a single-period,
constant-amplitude, limit-cycle evolution. It is the dynamics of this transition from
stable solutions to periodic, nonlinear behaviour that we aim to capture here by the
derivation of an appropriate nonlinear evolution equation.

The present work follows in the spirit of Abouseif & Toong (1982), and uses a two-
step chain-branching reaction model, a model extensively used at the Naval Research
Laboratories for the purposes of large-scale computations (e.g. Oran & Boris 1986).
The model has two components: a thermally neutral chain-branching induction zone
and an exothermic main reaction layer or chain-recombination layer of finite extent.
The extent of the induction zone is controlled by a reaction rate of Arrhenius form,
but no heat is released due to reaction. This mimics the fact that chain-initiation
and chain-branching reactions typically liberate only a small amount of heat. The
end of the induction zone corresponds to the point where a rapid conversion of
fuel into radical occurs (Short & Quirk 1997). The reaction rate in the exothermic
chain-recombination layer is taken to be independent of temperature, typical of many
chain-termination reactions, and such that the spatial extent of this layer is much
greater than that of the induction zone. This is to mimic the detonation structure
found in Short & Quirk (1997) for lower values of TB , where stable detonations
occur. Although this model falls short of full reaction kinetics, and indeed is not as
complex as that studied in Short & Quirk (1997), it does, in contrast to the classical
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one-step Arrhenius model, retain some of the essential chemical dynamics of a real
chain-branching reaction.

To proceed we need to invoke two assumptions on the detonation structure and
evolution dynamics. First, we assume a large activation energy in the induction zone
kinetics, consistent with the induction zone behaviour in Short & Quirk (1997). Then
we restrict ourselves to examining situations of low-frequency pulsating instabilities on
evolution times that are slow on the time scale of the particle transit time through the
smaller induction zone. This appears to be a highly reasonable approach since the nu-
merical calculations in Short & Quirk (1997) appear to show that the evolution scales
are slower even than the particle passage time through the much longer main reaction
zone. This slowly evolving approach was first used by Buckmaster & Ludford (1986)
and Buckmaster (1988) and later by Yao & Stewart (1996) in studying detonation
dynamics for a one-step Arrhenius reaction in the limit of large activation energy.

The nonlinear evolution equation we derive here for Chapman–Jouguet detonations
with our model two-stage chain-branching reaction mechanism has the second-order
autonomous form

α0hτττe
α5hτ + hττ[α1 + α2e

α5hτ] + α3hτ + α4h
2
ττe

α5hτ = 0,

where hτ is the shock velocity perturbation Dn ∼ D + εhτ, and αi, i = 1 to 5, are
constants determined by the analysis. Numerical solutions reveal that the evolution
equation has stable solutions (hτ = 0) and unstable solutions leading to stable, periodic
nonlinear limit-cycle oscillations.

2. Model
The propagation of the detonation is determined by the compressible reactive Euler

equations for an ideal gas. Dimensionless equations for density, ρ, pressure, p, velocity
u, temperature T and sound speed c can then be written in the conservative form

∂

∂n
[ρu] = −∂ρ

∂t
,

∂

∂n
[p+ ρu2] = − ∂

∂t
[ρu],

∂

∂n

[
γp

(γ − 1)ρ
+
u2

2
− βλ

]
= −∂u

∂t
− 1

u

[
1

(γ − 1)ρ

∂p

∂t
− γp

(γ − 1)ρ2

∂ρ

∂t
− β ∂λ

∂t

]
,


(2.1)

assuming an ideal equation of state,

c2 = T =
γp

ρ
. (2.2)

Here β is the heat release scaled with respect to the post-shock thermal energy (Short
& Stewart 1999), γ the ratio of specific heats and λ corresponds to the reaction
progress variable in either the induction zone or main reaction layer, satisfying the
consumption equation

∂λ

∂n
=

1

u

[
r − ∂λ

∂t

]
, (2.3)

for corresponding reaction rate r. Non-dimensional variables are determined by the
scales

ρ =
ρ̃

ρ̃s
, p =

p̃

ρ̃sc̃2
s

, u =
ũ

c̃s
, T =

T̃

T̃s
, c =

c̃

c̃s
, (2.4)
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Figure 1. A schematic of the steady detonation structure for the two-step chain-branching
reaction model.

while length and time are scaled according to

n =
ñ

ñs
, t =

t̃

ñs/c̃s
. (2.5)

The subscript s refers to the immediate post-shock values in the steady wave, while
ñs is chosen so that n = 1 corresponds to the end of the induction zone in the steady
wave (see below).

Under these scalings, the steady shock conditions are given by

ρ = 1, p =
1

γ
, u = Ms, T = 1, (2.6)

where Ms is the steady post-shock flow Mach number.

3. Detonation structure
The detonation structure is determined by specification of reaction rates. As men-

tioned previously, we employ a two-step chain-branching reaction model having two
components: a thermally neutral chain-branching induction zone and an exothermic
main reaction layer or chain-recombination layer of finite extent, as shown in figure 1.

3.1. Induction zone reaction rate

The dynamics in the induction zone are controlled by a reaction rate of Arrhenius
form in which no heat is released due to reaction. This mimics the fact that chain-
initiation and chain-branching reactions typically liberate only a small amount of
heat. Therefore, in the induction zone we set β = 0, and

r = Ms exp

[
1

ε

(
1− 1

T

)]
, (3.1)

where ε is the inverse activation energy, assumed small, so that

ε� 1. (3.2)

At the shock λ = 0, while the termination of the induction zone is signalled when
λ = 1, where fuel is instantaneously converted into chain-radical.

3.2. Main heat release layer reaction rate

The reaction rate in the exothermic chain-recombination (termination) layer is as-
sumed to be independent of the local thermodynamic state, a good model for chain-
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termination reactions. The rate is taken such that the spatial extent of this layer
is much greater than that of the induction zone, to mimic the detonation structure
found in Short & Quirk (1997) for lower values of TB , as described previously. In the
main heat release layer, we therefore assume a reaction rate of the well-known form

r = k(1− λ)1/2 (3.3)

where k is the rate constant, taking k � 1 to ensure that the main heat release
layer is much longer than the induction zone. The fractional power used in (3.3) is
to represent the fact that several elementary reaction steps are usually involved in
determining the overall recombination mechanism (Buckmaster & Ludford 1982). It
also has the advantage that the main heat release layer has finite extent. It should
be noted, however, that many other forms of reaction rate could be considered with
equal ease. Also, λ = 0 marks the start of the main heat release layer, beyond which
chain recombination occurs and heat is released, as in the reaction model of Short &
Quirk (1997), while λ = 1 signals the rear equilibrium point of the detonation, where
sonic flow conditions apply since the detonation is running at Chapman–Jouguet
speed.

4. Derivation of the nonlinear evolution equation
Let the shock front follow the path n = h(t). We seek those solutions having slowing

evolving dynamics, specifically one which is O(1/ε) on the scale of the particle transit
time through the induction zone. Introducing the slow time variable

τ = εt (4.1)

and transforming to a shock-attached coordinate system, the system (2.1) becomes,

∂

∂n
[ρ(u− εhτ)] = −ε∂ρ

∂τ
,

∂

∂n
[p+ ρu(u− εhτ)] = −ε ∂

∂τ
[ρu],

∂

∂n

[
γp

(γ − 1)ρ
+

(u− εhτ)2

2
− βλ

]
= −ε∂u

∂τ
− ε

(u− hτ)
×
[

1

(γ − 1)ρ

∂p

∂τ
− γp

(γ − 1)ρ2

∂ρ

∂τ
− β ∂λ

∂τ

]
,

∂λ

∂n
=

1

(u− εhτ)
[
r − ε∂λ

∂τ

]
,


(4.2)

where n = 0 now represents the shock position in the time-varying frame. Corre-
spondingly, the detonation Mach number Dn has the expansion

Dn ∼ D + εhτ, (4.3)

where D is the Chapman–Jouguet detonation Mach number in the unperturbed wave.

4.1. Induction zone analysis

There is no heat release in the induction zone, implying β = 0, while the kinetics are
governed by the reaction rate (3.1), with ε � 1. To O(ε), appropriate expansions in
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this zone are

ρ = 1 + ερ(1), p =
1

γ
+ εp(1), u = Ms + εu(1), T ∼ 1 + εT (1), (4.4)

with corresponding O(ε) shock conditions,

u(1) = kuhτ, p(1) = kphτ, T (1) = kThτ, ρ(1) = kρhτ, λ = 0. (4.5)

The coefficients appearing in (4.5) are given in the Appendix. To O(ε), it can be shown
that the perturbations satisfy the quasi-steady reduced equations,

∂

∂n
[ρu] = 0,

∂

∂n
[p+ ρu2] = 0,

∂

∂n

[
γp

(γ − 1)ρ
+
u2

2

]
= 0. (4.6)

Substituting (4.4) into (4.6) gives the solution

u(1) = kuhτ, p(1) = kphτ, T (1) = kThτ, ρ(1) = kρhτ, (4.7)

so that the perturbations at the shock are propagated along particle paths without
change of form (since β = 0).

The end of the induction zone, which marks the point at which fuel is converted
into chain radical, is determined by considering the reaction rate (3.1), which, with
expansions (4.4), becomes

∂λ

∂n
= eT

(1)

or
∂λ

∂n
= ekT hτ . (4.8)

Its solution, having λ = 0 at n = 0, is given by

λ = nekT hτ . (4.9)

Under the assumptions of our two-step chain-branching model, the end of the induc-
tion zone is then located at λ = 1, where

n = F(τ) = e−kT hτ . (4.10)

Thus O(ε) perturbations to the detonation shock lead to O(1) changes in the location
of the fuel to chain-radical conversion front due to the exponential sensitivity of the
Arrhenius reaction rate, a finding first observed by Buckmaster & Ludford (1986).

4.2. Main heat release layer analysis

The end of the induction zone corresponds to the point where fuel is converted into
chain radical, but also marks the start of the main reaction, or chain-recombination,
layer where heat is released as chain radical is converted into product. The analysis
of this layer begins by making the transformation

m = n− F(τ) (4.11)

so m = 0 marks the point where λ, now defined as the progress variable for the
chain-termination reaction, is zero. In this main reaction layer the reaction rate is
given by (3.3), independent of temperature, corresponding to the dynamics of chain-
termination reactions suggested in Short & Quirk (1997). Under the assumptions of
our model, the length of the main reaction layer is made greater than the length of
the induction zone through the choice

k = O(εk̃/ω̄)� 1 (4.12)
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for the rate constant k, with k̃ = O(1) > 0. For the present we seek dynamics where
ω̄ can take any appropriate scale such that 1� ω̄ � ε. Consequently, the evolution
will be also slowly varying relative to the transit time of a particle through the steady
(but longer) chain-termination region. The constant k is absorbed into the spatial
variable m by the transformation

m̃ =
ε

ω
m (4.13)

where ω = ω̄/k̃. To proceed with the analysis in the main reaction layer, it is
convenient to transform from the spatial variable m̃ to the reaction progress variable
λ as independent variable, a process facilitated by the relations(

∂

∂t

)
m̃

=

(
∂

∂t

)
λ

+

(
∂λ

∂t

)
m̃

(
∂

∂λ

)
,

(
∂

∂m̃

)
t

=

(
∂λ

∂m̃

)
t

(
∂

∂λ

)
. (4.14)

It can also be shown that, to the order of analysis we will be concerned with, the
relevant equations are given by

∂

∂λ
[ρ(u− ε(h+ F)τ)] = −ωu

r

∂ρ

∂τ
,

∂

∂λ
[p+ ρu(u− ε(h+ F)τ)] = −ωu

r

∂

∂τ
[ρu],

∂

∂λ

[
γp

(γ − 1)ρ
+

(u− ε(h+ F)τ)
2

2
− βλ

]
= −ωu

r

∂u

∂τ
− ω

r

×
[

1

(γ − 1)ρ

∂p

∂τ
− γp

(γ − 1)ρ2

∂ρ

∂τ
− β ∂λ

∂τ

]
.


(4.15)

We now seek expansions in the main reaction layer of the form,

ρ ∼ ρ(0) + ερ(1) + ωερ(2), p ∼ p(0) + εp(1) + ωεp(2),

u ∼ u(0) + εu(1) + ωεu(2), λ ∼ λ(0) + ελ(1).

 (4.16)

The conditions for the O(1) state at λ = 0 are the steady shock conditions (2.6), those
for the O(ε) perturbations at λ = 0, (4.7), while the O(εω) perturbations are all zero
at λ = 0, since there are no corresponding O(εω) terms in the induction zone.

The leading-order problem is simply the steady structure

∂

∂λ
[ρ(0)u(0)] = 0,

∂

∂λ
[p(0) + ρ(0)[u(0)]2] = 0,

∂

∂λ

[
γp(0)

(γ − 1)ρ(0)
+

[u(0)]2

2
− βλ

]
= 0,

 (4.17)

having as its solution the standard Rankine–Hugoniot relations for a Chapman–
Jouguet detonation velocity

p(0) = a+ (γ−1 − a)(1− λ)1/2, u(0) =
(1− γp(0))

γMs

+Ms, ρ(0) =
Ms

u(0)
, (4.18)



388 M. Short

where

M2
s =

2 + (γ − 1)D2

2γD2 − (γ − 1)
, a =

γ−1(1 + γD2)

2γD2 + 1− γ . (4.19)

An expression for the Chapman–Jouguet velocity D in terms of the pre-shock thermal-
energy scaled heat release Q (Short & Stewart 1999) is given in the Appendix. Of
particular interest to us is the sonic parameter given by

η = [u(0)]2 − γp(0)

ρ(0)
=

(γ + 1)(D2 − 1)ζ(ζ(D2 − 1)− (γD2 + 1)

(2γD2 + 1− γ)(2 + γ(D2 − 1))
, (4.20)

where

ζ = (1− λ)1/2. (4.21)

It is easily seen that η → 0 as ζ → 0, i.e. the flow is sonic at the point where reaction
terminates.

Furthermore, equations (4.15) can be integrated directly subject to the conditions
at λ = 0 mentioned previously. Using (4.16), the O(ε) first and O(εω) second order
problems may then be written in the combined form,

A(λ) · (y(1)(λ) + ωy(2)(λ)) = C0(λ)hτ + C1(λ)Fτ + ωC2(λ), (4.22)

where y = [ρ, u, p]T ,

A =


u(0) ρ(0) 0

[u(0)]2 2u(0)ρ(0) 1

− γp(0)

(γ − 1)[ρ(0)]2
u(0) γ

(γ − 1)ρ(0)

 , (4.23)

C 0 =


ρ(0) +Mskρ + ku − 1

0

u(0) +
1

(γ − 1)
(γkp − kρ) +Ms(ku − 1)

 , (4.24)

and

C 1 =

 ρ(0) − 1

0

u(0) −Ms

 , C2 =

 N1

N2

N3

 . (4.25)

The terms N1, N2 and N3 are given by

N1 = −
∫ λ

0

u(0)

r(0)

∂ρ(1)

∂τ
dλ,

N2 = −
∫ λ

0

u(0)

r(0)

[
u(0) ∂ρ

(1)

∂τ
+ ρ(0) ∂u

(1)

∂τ

]
dλ,

N3 = −
∫ λ

0

u(0)

r(0)

∂u(1)

∂τ
+

1

r(0)

[
1

(γ − 1)ρ(0)

∂p(1)

∂τ
− γ

(γ − 1)

p(0)

[ρ(0)]2

∂ρ(1)

∂τ
− β ∂λ

(1)

∂τ

]
dλ,


(4.26)

and result from the inclusion of time-derivative terms appearing on the right-hand
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side of (4.15), which account for first-order slowly varying acoustic effects in the main
reaction layer. To calculate the perturbation solutions y(1) and y(2) we need the inverse
of A, given by

A−1 =
adj(A)

det(A)
=

(γ − 1)

η

×



u(0) (γ + 1)

(γ − 1)
− γ

(γ − 1)
ρ(0)

−γ([u
(0)]2 + p(0)/ρ(0))

(γ − 1)ρ(0)

u(0)γ

(γ − 1)ρ(0)
−u(0)

u(0)

(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
−
(

[u(0)]2 +
γ

(γ − 1)

p(0)

ρ(0)

)
[u(0)]2ρ(0)


,

(4.27)

which is singular as η → 0.
Restricting our attention first to the O(ε) perturbation problem, we can solve the

system (4.22) to find

ρ(1) =
(γ − 1)

η
[A1hτ + A2Fτ] + B1(λ)hτ + B2(λ)Fτ,

u(1) =
(γ − 1)

η

[
−
(
u(0)

ρ(0)

)
λ=1

[A1hτ + A2Fτ]

]
+ B3(λ)hτ + B4(λ)Fτ,

p(1) =
(γ − 1)

η
[(u(0)]2)λ=1[A1hτ + A2Fτ]] + B5(λ)hτ + B6(λ)Fτ,


(4.28)

where A1, A2 (constants), Bi, i = 1, 6 (functions of λ) are given in the Appendix.
All solutions are singular at the Chapman–Jouguet sonic point η = 0, unless the
compatibility condition

A1hτ + A2Fτ = 0 or A1hτ − kTA2hττe
−kT hτ = 0 (4.29)

is satisfied. Equation (4.29) is an evolution equation governing the O(ε) dynamics of
the front. Seeking normal mode solutions of the form hτ ∝ exp(δt) for the linearized
equation (4.29), leads to the eigenvalue condition

δ =
A1

kTA2

. (4.30)

It is easily shown from the relations in the Appendix, that A1 > 0, A2 < 0 and
kT < 0 for all D and γ, so that to the order of the analysis we have considered
thus far, (4.30) represents a positive real eigenvalue. This is precisely the situation
found in Buckmaster & Ludford (1986) for their high-activation-energy, one-step
Arrhenius kinetic model, so apparently there is no qualitative difference thus far
in considering a spatial distributed main heat release layer, rather than a jump
discontinuity. Numerical calculations in Short & Quirk (1997), however, reveal that
in practice the detonation first becomes unstable to a pair of complex eigenvalues
that undergo a Hopf bifurcation.

The conclusion we are drawn to, therefore, is that it seems unreasonable, at first,
to assume that the evolution is quasi-steady on the time scale associated with particle
passage through the longer chain-termination region. One strategy to correct this
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deficiency would be to make the rate constant k of size O(ε), so that ω̄ = O(1), where
the time-derivative terms in (4.15) become O(1) rather than O(ω). However, it turns
out that the resulting problem has no explicit analytical solution. A second strategy is
to recognize that Short & Quirk (1997) have shown that the evolution time scales of
pulsating detonations do appear to be slow, with typical periods in the region of 30 to
40 times longer than the time scale of particle passage through the chain-termination
zone. It seems appropriate, therefore, to attempt a formal asymptotic solution to the
problem by the strategy of Picard iteration, using ω̄ (ε � ω̄ � 1) as the iteration
or control parameter. In order to obtain a solution in this manner, we proceed by
evaluating the O(εω) problem as determined by (4.22), set ω̄ = 1 and compare the
predictions of the resulting evolution equation with those obtained numerically by
Short & Quirk (1997). This asymptotic strategy is equivalent to retaining first-order
acoustic effects in the main heat release layer.

First, we recognize that the regular part of the first-order perturbations (4.28) can
be written as

ρ(1) = B1hτ + B2Fτ, u(1) = B3hτ + B4Fτ, p(1) = B5hτ + B6Fτ. (4.31)

To calculate the O(εω) terms governed by (4.22), we need an expression for λ(1)(m̃) in
terms of λ. It can be shown from (2.3), (3.3) and (4.16) that the relevant equation is

∂λ(1)

∂λ
+

λ(1)

2(1− λ) = − (u(1) − h− Fτ)
u(0)

(4.32)

with solution satisfying λ(1) = 0 when λ = 0

λ(1) = −(1− λ)1/2

∫ λ

0

(u(1) − hτ − Fτ)
u(0)(1− λ)1/2

dλ. (4.33)

Note that the integration in (4.33) and those for the integrals I1 to I6 appearing below
are facilitated by the identity, ∫ λ

0

dλ√
1− λ = −2

∫ ζ

1

dζ. (4.34)

The solution for λ(1) can then be written as

λ(1) = B7(λ)hτ + B8(λ)Fτ, (4.35)

with B7 and B8 given in the Appendix.
With the O(ε) solution now known, the system (4.22) may be inverted to determine

the O(εω) solution, which is again singular as η → 0, λ→ 0. In particular, as η → 0,
the solution for ρ(1) + ωρ(2) has the asymptotic form

ρ(1) + ωρ(2) → (γ − 1)

η

[
A1hτ + A2Fτ + ω

{(
u(0) (γ + 1)

(γ − 1)
I1 − γ

(γ − 1)
I3 + ρ(0)I5

)
λ=1

hττ

+

(
u(0) (γ + 1)

(γ − 1)
I2 − γ

(γ − 1)
I4 + ρ(0)I6

)
λ=1

Fττ

}]
. (4.36)

The integral quantities I1 to I6 are defined in the Appendix. Singular solutions are
eliminated by setting the quantity in the square brackets to zero. This leads to a new
evolution equation for the shock front, which may be written in the form

α0k̃
−1hτττe

−kT hτ + hττ[k̃
−1α1 + α2e

−kT hτ] + α3hτ + α4k̃
−1h2

ττe
−kT hτ = 0, (4.37)
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after setting ω̄ = 1, where

α0 = −kT
[
u(0) (γ + 1)

(γ − 1)
I2 − γ

(γ − 1)
I4 + ρ(0)I6

]
λ=1

,

α1 =

[
u(0) (γ + 1)

(γ − 1)
I1 − γ

(γ − 1)
I3 + ρ(0)I5

]
λ=1

,

α2 = −A2kT , α3 = A1, α4 = −kTα0.


(4.38)

Equation (4.37) is an automonous second-order equation in the shock velocity pertur-
bation which has hτ = 0 and hττ = 0 as the only equilibrium point. Although derived
for ω̄ � 1, we expect (4.37) to be a model equation which captures the essential
dynamics involved when ω̄ = 1. Depending on the coefficients k̃, α1 to α4 and kT , the
equation could describe stable or unstable solutions near the equilibrium point, and
possess stable or unstable periodic solutions when the equilibrium point is unstable.
For the parameter space we are concerned with, namely 1.2 6 γ 6 1.6 and 1 6 Q 6 8,
it can be shown numerically that α0 > 0, α1 > 0, α2 < 0, α3 > 0 and α4 > 0. Ignoring
the exponential terms in (4.37), the underlying dynamics of the evolution equation is
that of a linear oscillator with a nonlinear damping term that limits the growth of
linearly unstable solutions. The linear equation

α0k̃
−1hτττ + hττ[k̃

−1α1 + α2] + α3hτ = 0, (4.39)

with hτ ∝ exp(δτ), has eigenvalues

δ =

[
−[k̃−1α1 + α2]±

√
[k̃−1α1 + α2]2 − 4α0k̃−1α3

]/
2α0. (4.40)

For 1.2 6 γ 6 1.6 and 1 6 Q 6 8, eigenvalues are imaginary, stable for k̃−1α1 +α2 < 0,
unstable for k̃−1α1 + α2 > 0 and neutrally stable for k̃−1α1 + α2 = 0. Note that
the location of the neutral stability is not a function of the activation energy in the
induction zone, to the order calculated. This is due to the dominance of the detonation
structure by the zero-activation-energy recombination zone. Equation (4.37) can also
be re-written in a phase-plane form with u = hτ as

u̇ = v,

v̇ = −[v[k̃−1α1 + α2e
−kT u] + α3u+ α4k̃

−1v2e−kT u]k̃α−1
0 ekT u,

}
(4.41)

showing the presence of a single critical point u = v = 0.

5. Results
Figure 2(a) shows the neutral stability boundary obtained from the linear equation

(4.40) with k̃ = 1 for varying Q and γ. The system is stable to the left of the
boundary, unstable to the right. For γ fixed, unstable regions are accessible for
increasing Q, i.e. for more exothermic reactions, while for Q fixed, unstable regions
are accessible for increasing γ, i.e where gas dynamic pressure fluctuations play an
increasingly important role in determining a given temperature change. The frequency
of the neutrally stable mode is shown in figure 2(b). The change in growth rate and
frequency of the linear modes (4.40) is shown in figure 3 for varying Q and three
values of γ. Each mode undergoes a Hopf bifurcation in passing from stable to
unstable regions.
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Figure 2. (a) Neutral stability curve for k̃ = 1 with varying Q and γ. (b) Disturbance frequency
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Figure 3. (a) Growth rate and (b) frequency verses Q for k̃ = 1 and γ = 1.2 (solid line), γ = 1.4
(dotted line) and γ = 1.6 (dashed line).

The corresponding nonlinear behaviour is obtained by solving numerically the
evolution equation (4.37) using standard fourth-order Runge–Kutta algorithms. The
initial conditions in all the cases shown below are hτ = 0, hττ = 0.01. Figure 4(a)
shows the evolution of the shock velocity perturbation when Q = 1.5, γ = 1.6
and k̃ = 1 (α1/α0 = 0.219, α2/α0 = −0.189, α3/α0 = 0.067, and α4/α0 = −kT = 0.856),
where Re (δ) = −0.148 and Im (δ) = 0.258 (period 24.3). As expected, the solution
decays from its initial perturbation to the equilibrium point hτ = hττ = 0. The
corresponding phase portrait of the decay is shown in figure 4(b). Figure 5 shows the
evolution when Q = 2, γ = 1.6 and k̃ = 1 where Re (δ) = 0.00612 and Im (δ) = 0.2484
(period 25.29), i.e. when the linear system is unstable. There is a slow growth of the
shock velocity perturbation until it limits to a stable periodic limit-cycle solution
with period 25.5 and amplitude 1.717. Increasing Q leads to increasingly unstable
solutions. Figure 6 shows the evolution for Q = 2.5, γ = 1.6 and k̃ = 1 (α1/α0 = 0.162,
α2/α0 = −0.202, α3/α0 = 0.058, and α4/α0 = −kT = 0.896), where Re (δ) = 0.01979,
Im = 0.2399 (period 26.2). The long time solution is again a stable periodic limit
cycle having period 26.7 and amplitude 3.7. Note the increased amplitudes of the
acceleration and deceleration during the growth and decay phases of the cycle, as
seen in the phase portraits as Q increases from Q = 2 to Q = 2.5.

Figures 7, 8 and 9 show the resulting evolution obtained by further increases in Q,
specifically Q = 3, Q = 3.5 and Q = 4 respectively for γ = 1.6 and k̃ = 1. For Q = 4,
α1/α0 = 0.127, α2/α0 = −0.211, α3/α0 = 0.051, and α4/α0 = −kT = 0.935. The trend is
that all evolutions approach a stable periodic limit cycle with periods 28.5, 30.6 and
33.1, corresponding to periods of the linear modes 27.0, 27.7 and 28.4, but that the
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Figure 4. (a) Evolution of the shock velocity perturbation hτ for Q = 1.5, γ = 1.6 and k̃ = 1.
(b) Corresponding phase portrait.
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amplitude of the limit cycles, namely 5.7, 8.3, 11.25, increases. There is, however, a
marked change in the behaviour of the phase portrait for increasing Q. In figure 9,
there is a fast stage during the growth phase of the cycle associated with a large
magnitude of acceleration, a rapid deceleration around the peak of the cycle, and a
slow decay stage of the cycle involving much lower magnitudes of deceleration. The
non-symmetric nature of the cycle, involving fast acceleration and slow deceleration
phases, is also observed in the direct numerical calculations of Short & Quirk (1997)
as the amplitude of the limit cycle increases, i.e. as TB increases.

In all calculations performed, we have found that the limiting behaviour is a stable
limit cycle, with the amplitude of the cycle growing as regions of greater instability are
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encountered, a behaviour apparently different from the evolution equation derived
by Yao & Stewart (1996) for a one-step reaction. In their case, in addition to stable
periodic limit cycles, there are regions of singular unbounded growth in the shock
velocity perturbation, particularly as θ → ∞, where the Yao–Stewart equation limits
to that previously derived by Buckmaster (1988). Also of note is the similarity in
period of the linearly unstable mode compared with the period of the corresponding
nonlinear periodic limit cycle, a feature widely recognized in pulsating detonations for
both one-step and three-step reactions (Bourlioux et al. 1991; Quirk 1994; Short &
Quirk 1997; Sharpe & Falle 1999). This would indicate that the physical mechanisms
which govern the nonlinear stability of pulsating detonations appear to be captured
well by the linear oscillator (4.39).



Evolution of pulsating detonations 395

0.06

0.04

0.02

0

0.8 1.0 1.2 1.6

0.26

0.24

0.22

0.20

(a) (b)

Im(d)

–0.02
1.4

Re(d)

0.8 1.0 1.2 1.61.4

0.28

0.30

k –1˜ k –1˜

Figure 10. (a) Growth rate and (b) frequency versus k̃−1 for Q = 4 and γ = 1.4.
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(b) Corresponding phase portrait.

The transient fast and slow nature of the phase portraits, found above, also raises
concerns about resolution in the current state-of-the-art direct numerical calculations
of pulsating detonations, (Bourlioux et al. 1991; Quirk 1994; Short & Quirk 1997;
Sharpe & Falle 1999), where the resolution required to resolve such transient solutions
is far greater than any direct numerical calculations of pulsating detonations that
have been performed to date. Since the present evolution equation apparently predicts
stable, but large-amplitude, periodic solutions in all cases (although we have been
unable to rule out the presence of unstable periodic solutions purely based on the
form of the evolution equation), it would be worthwhile to re-examine the findings
of period-doubling and chaotic propagating detonations in numerical studies under
much higher resolution.

The final set of calculations examine the behaviour for increasing k̃−1, corresponding
to a widening of the chain-termination region. This refers directly to the study by Short
& Quirk (1997), where the effects of varying the length of the chain-termination region
relative to the chain-induction zone, controlled by the chain-branching temperature
TB , were examined. Stable solutions were predicted for lower TB , or in the limit
of a widening chain-termination region relative to the chain-induction zone. In the
present study, decreasing k̃ corresponds to decreasing the reaction rate (3.3), and
longer chain-termination regions. Figure 10 shows the evolution of the growth rate
and frequency with k̃−1 for the linear mode (4.40) for Q = 4 and γ = 1.4. As k̃−1

increases, the stable modes are encountered, as expected. Figures 11, 12 and 13
show the nonlinear evolution corresponding to k̃−1 = 1, k̃−1 = 1.2, and k̃−1 = 1.6
respectively. For k̃−1 = 1, Re (δ) = 0.0294 and Im (δ) = 0.253 (period 24.84) and
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the unstable growth limits to a periodic solution of amplitude 7.3 and period 25.55.
Similarly in figure 12, k̃−1 = 1.2 (α1/α0 = 0.144, α2/α0 = −0.203, α3/α0 = 0.065,
and α4/α0 = −kT = 0.696) with Re (δ) = 0.0126 and Im (δ) = 0.232 (period 27.08),
and the resulting evolution is a limit cycle of period 27.0 and amplitude 3.725.
For k̃−1 = 1.6, Re (δ) = −0.0085 and Im (δ) = 0.2014, and the initial perturbation
decays to the equilibrium solution hτ = hττ = 0. Short & Quirk (1997) found that
stable detonations are found for temperature-independent chain-termination regions
longer than temperature-dependent chain-induction regions, a trend mimicked by our
evolution equation (4.37).

6. Summary
A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with

chain-branching kinetics has been derived. We consider a model reaction system
having two components: a thermally neutral chain-branching induction zone governed
by an Arrhenius reaction, terminating at a location where conversion of fuel into chain
radical occurs; and a longer exothermic main reaction layer or chain-recombination
zone having a temperature-independent reaction rate. The evolution equation is
autonomous and second-order in time in the shock velocity perturbation. It predicts
unstable solutions for increasing exothermicity, for increasing specific heats ratio, and
decreasing ratio of the length of the chain-recombination zone to chain-induction
zone. In all cases calculated, unstable solutions lead to stable periodic limit cycles.
These dynamics correspond remarkably well with numerical solutions conducted
earlier for a model three-step chain-branching reaction.
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Appendix. Formulae
The coefficients appearing in the shock relations (4.5) are given by

ku =
(µ− 1)

µ(M2
s − 1)

[−1− (1− (γ − 1)(µ− 1))M2
s ],

kp =
(µ− 1)Ms

µ(M2
s − 1)

[2− (γ − 1)(µ− 1)M2
s ],

kT = (γ − 1)
(µ− 1)Ms

µ(M2
s − 1)

[2 + (µ− 1)(1− γM2
s )],

kρ =
(µ− 1)Ms

µ(M2
s − 1)

[2− (γ − 1)(µ− 1)],


(A 1)

where

µ =
(γ + 1)D2

2 + (γ − 1)D2
(A 2)

is the ratio of the shocked gas density to the unperturbed pre-shock gas density. The
formulae A1 and A2 appearing in the compatibility relation (4.29) are given by

A1 = u(0)|λ=1

(γ + 1)

(γ − 1)
[Mskρ + ku − 1] +

2γMs

(γ − 1)

+ρ(0)|λ=1

[
1

(γ − 1)
(γkp − kρ) +Ms(ku − 1)

]
, (A 3)

and

A2 = −u(0)|λ=1

(γ + 1)

(γ − 1)
+

2γMs

(γ − 1)
−Msρ

(0)|λ=1. (A 4)

The formulae B1 and B2 appearing in the O(ε) density perturbation ρ(1) (4.28) are
given by

B1 =
(γ − 1)

η
[(A3(u

(0) − u(0)|λ=1) + A4(ρ
(0) − ρ(0)|λ=1)],

B2 =
(γ − 1)

η
[(A5(u

(0) − u(0)|λ=1) + A6(ρ
(0) − ρ(0)|λ=1)],

 (A 5)

where

A3 =
(γ + 1)

(γ − 1)
[Mskρ + ku − 1], A4 =

1

(γ − 1)
(γkp − kρ) +Ms(ku − 1),

A5 = − (γ + 1)

(γ − 1)
, A6 = −Ms.

 (A 6)
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The formulae B3 and B4 appearing in the O(ε) velocity perturbation u(1) (4.28) are
given by

B3 =
(γ − 1)

η

[
A7

(
1

[ρ(0)]2
− 1

[ρ(0)]2
λ=1

)
+ A8

(
1

ρ(0)
− 1

ρ(0)|λ=1

)
+A10(u

(0) − u(0)|λ=1) + A11([u
(0)]2 − [u(0)]2

λ=1)
]
,

B4 =
(γ − 1)

η

[
A12

(
1

[ρ(0)]2
− 1

[ρ(0)]2
λ=1

)
+ A13

(
1

ρ(0)
− 1

ρ(0)|λ=1

)
+A14(u

(0) − u(0)|λ=1) + A11([u
(0)]2 − [u(0)]2

λ=1)
]
,


(A 7)

where

A7 = − γ

(γ − 1)
[Mskρ + ku − 1]

(
1

γ
+M2

s

)
, A8 = − γ

(γ − 1)

[
1

γ
+M2

s

]
,

A10 = −
[

1

(γ − 1)
(γkp − kρ) +Ms(ku − 1)

]
, A11 = −1,

A12 =
γ

(γ − 1)

[
1

γ
+M2

s

]
, A13 = −A12, A14 = −A6.


(A 8)

The formulae B5 and B6 appearing in the O(ε) pressure perturbation p(1) (4.28) are
given by

B5 =
(γ − 1)

η

[
A15

[
u(0)

(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
− u(0)|λ=1

(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
λ=1

]

+A16

[(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
−
(

[u(0)]2 +
2γ

(γ − 1)

p(0)

ρ(0)

)
λ=1

]
+A18[u

(0) − u(0)|λ=1] + A19([u
(0)]2 − [u(0)]2

λ=1)
]
, (A 9)

B6 =
(γ − 1)

η

[
A11

[
u(0)

(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
− u(0)|λ=1

(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
λ=1

]

+A14

[(
[u(0)]2 +

2γ

(γ − 1)

p(0)

ρ(0)

)
−
(

[u(0)]2 +
2γ

(γ − 1)

p(0)

ρ(0)

)
λ=1

]
+A20[u

(0) − u(0)|λ=1] + A14([u
(0)]2 − [u(0)]2

λ=1)
]
, (A 10)

where

A15 = Mskρ + ku − 1, A16 = −A6, A19 = −A6, A20 = −M2
s ,

A18 = Ms

[
1

(γ − 1)
(γkp − kρ) +Ms(ku − 1)

]
.

 (A 11)

The formulae B7 and B8 appearing in the O(ε) reaction progress perturbation λ(1)

(4.35) are given by

B7 = −(1−λ)1/2

∫ λ

0

B3 − 1

u(0)(1− λ)1/2
dλ, B8 = −(1−λ)1/2

∫ λ

0

B4 − 1

u(0)(1− λ)1/2
dλ. (A 12)
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Finally, the integrals I1 to I6 appearing in the evolution equation (4.37) and (4.38) are
given by

I1 = −
∫ λ

0

u(0)

r(0)
B1 dλ, I2 = −

∫ λ

0

u(0)

r(0)
B2 dλ,

I3 = −
∫ λ

0

u(0)

r(0)

[
u(0)B1 + ρ(0)B3

]
dλ,

I4 = −
∫ λ

0

u(0)

r(0)

[
u(0)B2 + ρ(0)B4

]
dλ,

I5 = −
∫ λ

0

u(0)

r(0)
B3 +

1

r(0)

[
1

(γ − 1)ρ(0)
B5 − γ

(γ − 1)

p(0)

[ρ(0)]2
B1 − βB7

]
dλ,

I6 = −
∫ λ

0

u(0)

r(0)
B4 +

1

r(0)

[
1

(γ − 1)ρ(0)
B6 − γ

(γ − 1)

p(0)

[ρ(0)]2
B2 − βB8

]
dλ.



(A 13)

The Chapman–Jouguet detonation velocity D is given by

D =

[(
1 +

(γ2 − 1)

γ
Q

)
+

((
1 +

(γ2 − 1)

γ
Q

)
− 1

)1/2
]1/2

. (A 14)
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